Follow us on Twitter: @GoAfricaNetwork
A device called the Rochester Cloak uses an array of lenses to bend light, effectively rendering what is on the other side invisible to the eye. And you can try it for yourself.
One of the problems with the cloaking devices developed to date — and it’s a big one — is that they really only work if both the viewer and whatever is being cloaked remain still. This, of course, is not entirely practical, but a difficult problem to solve.
For the first time, researchers have made a cloaking device that works multidirectionally in three dimensions — using no specialised equipment, but four standard lenses.
“There’ve been many high tech approaches to cloaking and the basic idea behind these is to take light and have it pass around something as if it isn’t there, often using high-tech or exotic materials,” said professor of physics at Rochester University John Howell, who developed the Rochester Cloak with graduate student Joseph Choi.
“This is the first device that we know of that can do three-dimensional, continuously multidirectional cloaking, which works for transmitting rays in the visible spectrum,” Choi added.
As well as at least partially solving the viewpoint problem, the Rochester cloak also leaves the background undisturbed, without any warping, as has appeared in other devices.
https://www.youtube.com/watch?v=vtKBzwKfP8E
This invisibility has a range of around 15 degrees; as you can see in the video below at around the two-minute mark when Choi places his hand in between the lenses, the dead centre of the field is not included.
However, this problem can be solved with a more complex configuration.
It will not be useable for espionage purposes any time soon, but Howell and Choi imagine a more beneficent purpose for their invention: allowing a surgeon to operate without their view being obstructed by their hands, for instance, or allowing truck drivers to see through blind spots.
And, because the setup is so simple, anyone can grab some lenses and give it a try. You can find instructions for doing so on the Rochester University website, and a paper describing the research on arXiv.